An Extensor Mechanism for an Anatomical Robotic Hand
نویسندگان
چکیده
The human finger possesses a structure called the extensor mechanism, a web-like collection of tendinous material that lies on the dorsal side of each finger and connects the controlling muscles to the bones of the finger. In past robotic hand designs, extensor mechanisms have generally not been employed due in part to their complexity and a lack of understanding of their utility. This paper presents our first design and analysis effort of an artificial extensor mechanism. The goal of our analysis is to provide an understanding of the extensor mechanism’s functionality so that we can extract the crucial features that need to be mimicked to construct an anatomical robotic hand. With the inclusion of an extensor mechanism, we believe all possible human finger postures can be achieved using four cable driven actuators. We identified that this extensor mechanism gives independent control of the metacarpo-phalangeal (MCP) joint and acts not only as an extensor but also as a flexor, abductor, adductor, or rotator depending on the finger’s posture.
منابع مشابه
Mechatronic Hand Design with Integrated Mechanism in Palm for Efficiency Improve of the Finger.
One of the most important case in humanoid robot designing is hand, which it consider as an country development. High percentage of robot work quality depend on hand capability. A robot function increase with hand movement. One of important movement in artificial hand capability relate to fingers lateral movement. This case has more effect intake of special objects such as round shape or moving...
متن کاملDesign, Evaluation and Prototyping of a New Robotic Mechanism for Ultrasound Imaging
This paper presents a new robotic mechanism for ultrasound imaging. The device is placed on a patient's body by an operator, and an ultrasound expert controls the motions of the device to obtain ultrasound images. The paper focuses on the robotic mechanism that performs ultrasound imaging. The design of the mechanism is based on two approaches to produce center of motion for an ultrasound probe...
متن کاملGrasp analysis of a four-fingered robotic hand based on Matlab simmechanics
The structure of the human hand is a complex design comprising of various bones, joints, tendons, and muscles functioning together in order to produce the desired motion. It becomes a challenging task to develop a robotic hand replicating the capabilities of the human hand. In this paper, the analysis of the four-fingered robotic hand is carried out where the tendon wires and a spring return me...
متن کاملAn Anatomical Variation of Extensor Indicis Muscle: A Case Report
The extensor indicis is a narrow, elongated skeletal muscle in the deep layer of the dorsal forearm that originates from the one third of the distal posterior surface of the shaft of ulna below the origin of the extensor pollicis longos and interosseous membrane. It runs through the fourth tendon compartment with the extensor digitorum under the extensor retinaculum. The extensor indicis joins ...
متن کاملThe ACT Hand
Robotic hands built for manipulation are often anthropomorphic but not anatomically accurate. We are constructing an anatomically-correct testbed (ACT) of the human hand to understand its mechanisms, function, and control. We have previously demonstrated that an accurate model of the extensor mechanism in the ACT Hand is crucial in realizing the human-like finger movements. Here, we present des...
متن کامل